Regularity of Operators on Essential Extensions of the Compacts
نویسنده
چکیده
A semiregular operator on a Hilbert C∗-module, or equivalently, on the C∗-algebra of ‘compact’ operators on it, is a closable densely defined operator whose adjoint is also densely defined. It is shown that for operators on extensions of compacts by unital or abelian C∗-algebras, semiregularity leads to regularity. Two examples coming from quantum groups are discussed. AMS Subject Classification No.: 46H25, 47C15
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملArens-regularity of algebras arising from tensor norms
We investigate the Arens products on the biduals of certain algebras of operators on nonreflexive Banach spaces. To be precise, we study the α-nuclear operators, where α is a tensor norm. This includes the approximable and nuclear operators, and we use these, together with the 2-nuclear operators, as motivating examples. The structure of the two topological centres of the bidual are studied, an...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملStability of essential spectra of bounded linear operators
In this paper, we show the stability of Gustafson, Weidmann, Kato, Wolf, Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations belonging to a broad classes of operators $U$ such $gamma(U^m)
متن کاملSelf-commutators of composition operators with monomial symbols on the Bergman space
Let $varphi(z)=z^m, z in mathbb{U}$, for some positive integer $m$, and $C_varphi$ be the composition operator on the Bergman space $mathcal{A}^2$ induced by $varphi$. In this article, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators $C^*_varphi C_varphi, C_varphi C^*_varphi$ as well as self-commutator and anti-self-commutators of $C_...
متن کامل